×

Warning

JUser: :_load: Unable to load user with ID: 3653
Monday, 13 October 2014 15:23

Silicon quantum computing records smashed

By

Australia hasn't had many decent sporting results for a while but two UNSW research teams have done the country proud, finding solutions to a critical challenge that has held back the realisation of super powerful quantum computers.

The teams, who worked separately but from the same lab at Sydney's UNSW, created two types of quantum bits, or “qubits” – the building blocks for quantum computers – that each process quantum data with an accuracy above 99%.

The two findings have been published simultaneously today in the journal Nature Nanotechnology.

"For quantum computing to become a reality we need to operate the bits with very low error rates," says Scientia Professor Andrew Dzurak, Diirector of the Australian National Fabrication Facility at UNSW.

"We've now come up with two parallel pathways for building a quantum computer in silicon, each of which shows this super accuracy,” Associate Professor Andrea Morello from UNSW’s School of Electrical Engineering and Telecommunications said.

The teams were the first in the world to demonstrate single-atom spin qubits in silicon, reported in Nature in 2012 and 2013.

Now the team led by Dzurak has discovered a way to create an “artificial atom” qubit with a device remarkably similar to the silicon transistors used in consumer electronics, known as MOSFETs.

Post-doctoral researcher Menno Veldhorst, lead author on the paper reporting the artificial atom qubit, says, “It is really amazing that we can make such an accurate qubit using pretty much the same devices as we have in our laptops and phones”.

Morello’s team meanwhile has been pushing the “natural” phosphorus atom qubit to the extremes of performance.

Dr Juha Muhonen, a post-doctoral researcher and lead author on the natural atom qubit paper, said: “The phosphorus atom contains in fact two qubits: the electron, and the nucleus. With the nucleus in particular, we have achieved accuracy close to 99.99%. That means only one error for every 10,000 quantum operations.”

"Even though methods to correct errors do exist, their effectiveness is only guaranteed if the errors occur less than 1% of the time," Dzurak said.

"Our experiments are among the first in solid-state, and the first-ever in silicon, to fulfill this requirement."

The high-accuracy operations for both natural and artificial atom qubits is achieved by placing each inside a thin layer of specially purified silicon, containing only the silicon-28 isotope. This isotope is perfectly non-magnetic and, unlike those in naturally occurring silicon, does not disturb the quantum bit.

The purified silicon was provided through collaboration with Professor Kohei Itoh from Keio University in Japan.

UNSW said the next step for the researchers is to build pairs of highly accurate quantum bits, with large quantum computers expected to consist of many thousands or millions of qubits and may integrate both natural and artificial atoms.

Morello’s research team also established a world-record “coherence time” for a single quantum bit held in solid state.

"Coherence time is a measure of how long you can preserve quantum information before it’s lost," Morello said The longer the coherence time, the easier it becomes to perform long sequences of operations, and therefore more complex calculations.

The team was able to store quantum information in a phosphorus nucleus for more than 30 seconds.

"Half a minute is an eternity in the quantum world. Preserving a ‘quantum superposition’ for such a long time, and inside what is basically a modified version of a normal transistor, is something that almost nobody believed possible until today," Morello said.

“For our two groups to simultaneously obtain these dramatic results with two quite different systems is very special, in particular because we are really great mates,” Dzurak said.

BUSINESS WORKS BETTER WITH WINDOWS 1O. MAKE THE SHIFT

You cannot afford to miss this Dell Webinar.

With Windows 7 support ending 14th January 2020, its time to start looking at your options.

This can have significant impacts on your organisation but also presents organisations with an opportunity to fundamentally rethink the way users work.

The Details

When: Thursday, September 26, 2019
Presenter: Dell Technologies
Location: Your Computer

Timezones

QLD, VIC, NSW, ACT & TAS: 11:00 am
SA, NT: 10:30 am
WA: 9:00 am NZ: 1:00 pm

Register and find out all the details you need to know below.

REGISTER!

ADVERTISE ON ITWIRE NEWS SITE & NEWSLETTER

iTWire can help you promote your company, services, and products.

Get more LEADS & MORE SALES

Advertise on the iTWire News Site / Website

Advertise in the iTWire UPDATE / Newsletter

Promote your message via iTWire Sponsored Content/News

Guest Opinion for Home Page exposure

Contact Andrew on 0412 390 000 or email [email protected]

OR CLICK HERE!

VENDOR NEWS & EVENTS

REVIEWS

Recent Comments