Big Data Market Segment LS
Big Data Market Segment RS
Wednesday, 30 September 2020 21:22

HPE applies 'memory-driven computing' to advanced global good system with CGIAR

By
The back of HPE's Memory Driven Computing Sandbox The back of HPE's Memory Driven Computing Sandbox

HPE and CGIAR, formerly the Consultative Group on International Agricultural Research, have joined forces to announce a global research partnership to uncover insights about food security challenges, now intensified due to COVID-19.

CGIAR, which bills itself as the world's largest global agricultural innovation network, is collaborating with HPE to accelerate solutions to these food global challenges. Both are doing this by enabling modelling of food systems using HPE's Memory-Driven Computing Sandbox with CGIAR's data sets.

We're told that "one of the most pressing challenges facing the world today is ensuring a sustainable global food supply. Nearly 800 million people are chronically undernourished and 2 billion are micronutrient deficient, while the number of smaller farms, globally, is on the decline because profitability is so difficult.

"In short order, these problems will significantly worsen as the United Nations (UN) forecasts the world’s population will grow to 8.5 billion by 2030, and the World Economic Forum predicts a population of 9.8 billion by 2050, requiring 70 percent more food than is consumed today".

The problem has only worsened in light of the global COVID-19 pandemic. Both companies say the crisis "is affecting food systems and supply chains worldwide, but it is unfolding differently around the world, which means the problems cannot be solved with one universal solution".

So, who exactly is CGIAR?

CGIAR is "a global research partnership of 14 non-profit agricultural research institutes working in over 100 countries on research into virtually every aspect of food security. In its 11 genebanks around the world, CGIAR preserves and regenerates 760,000 varieties of food crops that represent important genetic diversity available for building resilience in the global food supply.

"To fully understand the situation today, CGIAR needs to generate a timely, high-frequency picture of what is happening in “food basket” locations – or areas of significant food production – around the world. A complete picture often requires data from multiple sources including crop performance, weather records, economic activity, and surveys".

We're told that insights from this data help researchers answer questions like:

  • How is economic activity and food movement happening in food baskets on a weekly basis?
  • How can these analytics guide the agriculture sector and its most vulnerable participants in a period of increasing climate variability and extreme weather events?
  • How can public, private, and non-profit actors meaningfully share all of this data to enable better outcomes for all?
  • How can stakeholders track and measure progress toward the UN’s Sustainable Development Goals for zero hunger by 2030? 

Answers to questions like these help CGIAR detect and predict food security challenges and guide collective action to solve them.

Brian King, coordinator of CGIAR’s Platform for Big Data in Agriculture said: "Being able to create a picture in 200 cities or settlements in a short amount of time is dramatically different from what we can do with our existing compute resources.

“Since the impacts of COVID-19 are unfolding differently by country, our ability to look at the situation both at the aggregate level and from an on-the-ground, local view is incredibly valuable. That capability enables a different way for us to operate as a research organisation. But generating high-frequency insights across multiple distinct contexts at once demands compute power to support it and more compute capacity than we had. The Memory-Driven Computing Sandbox appeared at just the right time.”

CGIAR notes that while it has high-performance computing clusters at several of its Centres, it is "seeing increased need to develop timely, localised information and analysis across an array of food security contexts in light of the pandemic, and this is beyond its existing compute resources. The Memory-Driven Computing Sandbox sets itself apart by giving every processor (up to 64 sockets) in the system access to a giant shared pool of memory – up to 48 terabytes – which is a sharp departure from today's systems. Typically, relatively small amounts of memory – just a few terabytes – are tethered to each processor; the resulting inefficiencies limit performance. By having all of the massive, diverse data sets available at one time in memory, users can clear computational bottlenecks that hinder research and discovery.

"With access to the Sandbox – so named for the controlled environment it offers customers to experiment with advanced compute resources – CGIAR is building cross-cutting, high-frequency views of food systems linking crop modeling – including weather records and how crops performed and what the yield was, by year and location – survey data, and overall economic activity (e.g. movement of goods and people). CGIAR is monitoring emissions from up to 1,000 points across India and East Africa using public satellite data from space agencies. Changes in emissions indicate changes in economic activity that give researchers important context for understanding how food security challenges are unfolding by location. Equipped with this dynamic, unfolding picture, CGIAR is able to compare with crop and survey data to monitor how that individual crop will impact the broader food supply.

"Insights from this data will enable CGIAR to see and increasingly predict how food security challenges are unfolding from the COVID-19 crisis to inform policy makers, food relief actors, and other stakeholders. Using CGIAR’s existing technology, emissions analysis on one point on the Earth could take four to five hours to run. Today, CGIAR can run multiple analyses over multiple points with sufficient frequency to inform timely action on food security".

Janice Zdankus, VP, Innovation for Social Impact, HPE said: "At HPE, our purpose is to advance the way people live and work, and we are committed to applying technology to help address some of society’s toughest challenges.

“One of our focus areas is world hunger, inspired by results from Purdue University's 1,400-acre research farm and its application of precision agriculture to increase crop yields while drastically conserving resources. With CGIAR, we saw the opportunity to apply innovative technologies, like HPE’s Memory-Driven Computing Sandbox to drive faster insights and help address this incredibly complex challenge.”

CGIAR noted that "While the pandemic has caused immediate and near-term issues that must be addressed, the future of food security must be evaluated on a longer horizon as well. Mapping and predicting climate risk, vulnerability, and adaptation options are top priorities for CGIAR".

CGIAR's Brian King added: “Building monitoring and modeling capabilities is critical. The whole world was caught flat footed during the pandemic because we found that there were huge gaps in timely, good quality data to monitor and respond quickly to the myriad – and very different – food system disruptions unfolding as a result of the COVID crisis. The global community of food security actors has begun to build up capabilities for more timely, localised diagnosis and response to food security challenges, and complement these with mapping and predicting risks and vulnerabilities of potential climate shocks to food security on a longer time horizon. We will be able to highlight the best options for vulnerable farmers in those areas to adapt to changing conditions and help equip them for that before the next crisis arises.”

For instance, CGIAR says it "leverages models to predict the kinds of climate hazards (disaster events like cyclones, floods, and droughts) that will likely threaten small-holder farmers in developing economies. CGIAR then helps policy makers and the at-risk farmers themselves prepare for these types of climatic shocks so that the impact to the food system is minimised.

"As the year 2030 approaches, global efforts to achieve the Sustainable Development Goal zero hunger must be digitally powered".

King concluded by stating: “The global community is finding we need to look at these data types together and with greater frequency to inform targeted investments that build resilience for small-holder farmers. There’s a lot of work to be done in creating the analytic underpinnings to enable zero hunger.”


Subscribe to ITWIRE UPDATE Newsletter here

Now’s the Time for 400G Migration

The optical fibre community is anxiously awaiting the benefits that 400G capacity per wavelength will bring to existing and future fibre optic networks.

Nearly every business wants to leverage the latest in digital offerings to remain competitive in their respective markets and to provide support for fast and ever-increasing demands for data capacity. 400G is the answer.

Initial challenges are associated with supporting such project and upgrades to fulfil the promise of higher-capacity transport.

The foundation of optical networking infrastructure includes coherent optical transceivers and digital signal processing (DSP), mux/demux, ROADM, and optical amplifiers, all of which must be able to support 400G capacity.

With today’s proprietary power-hungry and high cost transceivers and DSP, how is migration to 400G networks going to be a viable option?

PacketLight's next-generation standardised solutions may be the answer. Click below to read the full article.

CLICK HERE!

WEBINAR PROMOTION ON ITWIRE: It's all about webinars

These days our customers Advertising & Marketing campaigns are mainly focussed on webinars.

If you wish to promote a Webinar we recommend at least a 2 week campaign prior to your event.

The iTWire campaign will include extensive adverts on our News Site itwire.com and prominent Newsletter promotion https://www.itwire.com/itwire-update.html and Promotional News & Editorial.

This coupled with the new capabilities 5G brings opens up huge opportunities for both network operators and enterprise organisations.

We have a Webinar Business Booster Pack and other supportive programs.

We look forward to discussing your campaign goals with you.

MORE INFO HERE!

BACK TO HOME PAGE
Alex Zaharov-Reutt

One of Australia’s best-known technology journalists and consumer tech experts, Alex has appeared in his capacity as technology expert on all of Australia’s free-to-air and pay TV networks on all the major news and current affairs programs, on commercial and public radio, and technology, lifestyle and reality TV shows. Visit Alex at Twitter here.

Share News tips for the iTWire Journalists? Your tip will be anonymous

WEBINARS ONLINE & ON-DEMAND

GUEST ARTICLES

VENDOR NEWS

Guest Opinion

Guest Interviews

Guest Reviews

Guest Research

Guest Research & Case Studies

Channel News

Comments